Lambda Interpreter, Part II, Semantics

First thing, we need to be able to define identifiers, at least at the top level, for S, K, I, etc. A simple list of string-value pairs will do, we will fill in our default environment later:

fun getenv [] v = NONE
  | getenv ((v',e)::s) v =
    if (v = v') then SOME e else getenv s v;

(* Make an environment from a list of strings *)
fun mkenv [] k = k
  | mkenv (v::e::s) k = mkenv s ((v,parse e)::k)

We will define two evaluation mechanisms, one will reduce one redex at a time, with the index of the redex passed in to the function, the other will just reduce until a normal form is reached, if there is one.

It’s convenient to use option types to indicate if a subexpression has been reduced, and it’s even more convenient to define some monadic-style helper functions:

fun lift f NONE = NONE
  | lift f (SOME x) = SOME (f x);

fun bind f NONE = NONE
  | bind f (SOME a) = f a;

(* Apply f to a, if no result, apply g to b *)
fun try f a g b = case f a of r as SOME _ => r | NONE => g b;

fun get (SOME x) = x;

Here’s the single redex reducer: try to reduce each subexpression, keeping track of redex indexes. Return SOME(e') if a sub evaluation succeeds, else return NONE with some monadic trickery to handle the mechanics. We avoid expanding global identifiers unless they are in functional position.

fun reduce env n e =
  let
    fun aux n (Var _) = NONE
      | aux 0 (App(Lambda(v,e1),e2)) = SOME (subst v e2 e1)
      | aux n (App(Lambda(v,e1),e2)) =
	try (lift (fn e1' => App(Lambda(v,e1'),e2)) o aux (n-1)) e1
	    (lift (fn e2' => App(Lambda(v,e1),e2')) o aux (n-1)) e2
      | aux n (App(e1 as Var v,e2)) =
	try (bind (fn e1' => aux n (App(e1',e2))) o getenv env) v
	    (lift (fn e2' => App(e1,e2')) o aux n) e2
      | aux n (App(e1,e2)) =
	try (lift (fn e1' => App(e1',e2)) o aux n) e1
	    (lift (fn e2' => App(e1,e2')) o aux n) e2
      | aux n (Lambda(v,e1)) =
	(lift (fn e1' => Lambda(v,e1')) o aux n) e1
  in
      aux n e
  end;

That’s all very well for reducing individual redexes, let’s define something that will just let rip on an expression. We’d like to do a proper normal order evaluation, so we’ll use an evaluation stack: go down left branch of expression, reducing beta redexes as we go. When we have got to the end, there are no more top-level redexes, so recursively evaluate the items on the stack, and finally fold back up in into a single expression:

fun eval env e = 
  let
    fun foldapp(e1::e2::s) = foldapp(App(e1,e2)::s)
      | foldapp ([e1]) = e1;
    fun aux (Lambda(v,e1)) (e2::s) = aux (subst v e2 e1) s
      | aux (Lambda(v,e1)) [] = Lambda(v, eval env e1)
      | aux (App(e1,e2)) s = aux e1 (e2::s)
      | aux (e as Var _) [] = e
      | aux (e as Var v) s = 
        (case getenv env v of
             SOME e' => aux e' s
           | _ => foldapp (map (eval env) (e::s)));
  in
    aux e []
  end;

All we need now is a suitable environment, and we can start reducing.

val stdenv =
    mkenv ["S", "λxyz.(xz)(yz)",
	   "K", "λxy.x",
	   "I", "λx.x",
	   "Y", "λf.(λx.f(xx))(λx.f(xx))",
	   "M", "λxy.y(xy)",
	   "T", "λxy.x",
	   "F", "λxy.y",
	   "Z", "λn.n(λx.F)T",
	   "0", "λf.λn.n",
	   "N", "λn.λf.λx.f(nfx)",
	   "P", "λnfx.n(λgh.h(gf))(λu.x)(λu.u)",
	   "*", "λmnfx.m(nf)x",
	   "+", "λmnfx.mf(nfx)",
	   "1", "N0",
	   "2", "N1",
	   "3", "N2",
	   "4", "N3",
	   "5", "N4",
	   "6", "N5",
	   "7", "N6",
	   "8", "N7",
	   "9", "N8",
	   "H", "Y(λgn.(Zn)1(*n(g(Pn))))"
	  ] [];

As well as the usual suspects, M is my favourite combinator. T and F help define conditionals, and there is the usual definition of Church numerals. H, obviously, is the factorial function.

Finally, we define some convenience functions:

fun run e =
  case reduce stdenv 0 (pp e) of
    SOME e' => run e'
  | NONE => e;

(* Evaluate first redex *)
fun e0 e = pp (get (reduce stdenv 0 e));
(* Evaluate second redex *)
fun e1 e = pp (get (reduce stdenv 1 e));
(* Evaluate a symbol *)
fun esym s = pp (get (getenv stdenv s));
(* Evaluate to normal form *)
fun e s = pp (eval stdenv (parse s));

And now at last we can do some reductions:

First we probably should check that variable capture is handled properly:

- e "(\\abcd.abcd)xyzw";
xyzw
val it = App (App (App #,Var #),Var "w") : Exp
- e "(\\vxx'x''.vxx'x'')xyzw";
xyzw
val it = App (App (App #,Var #),Var "w") : Exp

It’s interesting that in the first reduction of the latter, there is a sort of cascade of primes being added:

- e0 (parse "(\\vxx'x''.vxx'x'')xyzw");
(λx'x''x'''.xx'x''x''')yzw
val it = App (App (App #,Var #),Var "w") : Exp

Anyway, that seems to check out so we can move on to something more interesting. Let’s derive the Turing fixpoint combinator from M and Y:

- e1(e1(e0(parse"YM")));
(λx.M(xx))(λx.M(xx))
(λxy.y(xxy))(λx.M(xx))
(λxy.y(xxy))(λxy.y(xxy))
val it = App (Lambda ("x",Lambda #),Lambda ("x",Lambda #)) : Exp

Nice. And we can do factorials:

- e "H4";
λfx.f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(fx)))))))))))))))))))))))
val it = Lambda ("f",Lambda ("x",App #)) : Exp

The output is a little big to put inline, but the enthusiastic can try:

run (parse "H2");

See [[here]] for output.


Lambda Interpreter, Part I, Syntax.

Here’s a simple lambda calculus interpreter I wrote a little while ago. It’s in ML, a wonderful language for its polymorphic type inference, pattern matching, and effortless higher order functions.

We start off nice and simple with some abstract syntax:

type Variable = string;

datatype Exp = Var of Variable 
             | App of Exp * Exp 
             | Lambda of Variable * Exp;

We could use de Bruijn indices for variables, making variable substitution easier, but I’m a bit of a traditionalist and it’s not too difficult to do it the hard way.

First job is printing expressions, a nice little recursive scanner will do, and we can sort out bracketing, eliding λx.λy.e to λxy.e and so on with some nifty pattern matching:

fun pexp (Var x) = x
  | pexp (e as Lambda _) = "λ" ^ plambda e
  | pexp (App(e1 as App _,e2)) = pexp e1 ^ pexp1 e2
  | pexp (App(e1,e2)) = pexp1 e1 ^ pexp1 e2
and pexp1 (Var x) = x
  | pexp1 e = "(" ^ pexp e ^ ")"
and plambda(Lambda(v,e)) = v ^ plambda e
  | plambda e = "." ^ pexp e;

fun pp e = (print (pexp e ^ "\n"); e)

Next up, variable substitution, a little tedious, but has to be done. First, we need to know if a variable occurs free in an expression. If it does, we need to find a variable that doesn’t, which we do by decorating with primes. Having got ourselves a variable that isn’t free, we can use it to substitute for the one that is, and that’s all there is to it. The code is probably clearer:

fun isfree c (Var c') = c = c'
  | isfree c (Lambda(c',e)) = 
    if (c = c') then false else isfree c e
  | isfree c (App(e1,e2)) = 
    if isfree c e1 then true else isfree c e2;

fun occurs c (Var c') = c = c'
  | occurs c (Lambda(c',e)) = 
    if (c = c') then true else occurs c e
  | occurs c (App(e1,e2)) = 
    if occurs c e1 then true else occurs c e2;

(* Add primes to variable until we find one not occurring in e *)
fun findnew v e =
    let val v' = v ^ "'"
    in
        if not (occurs v' e) then v'
        else findnew v' e
    end;

fun subst v e1 (e2 as (Var v')) = if v = v' then e1 else e2
  | subst v e1 (App(e2,e3)) = App(subst v e1 e2, subst v e1 e3)
  | subst v e1 (e2 as Lambda(v',e3)) = 
    if not (isfree v e2) then e2 (* Includes case v = v' *)
    else if isfree v' e1 then 
        (* Find a variable not in e1 or e3 to use *)
        let val v'' = findnew v' (App(e1,e3))
        in subst v e1 (Lambda(v'', subst v' (Var v'') e3))
        end
    else Lambda(v', subst v e1 e3);

Phew, glad that’s over. Next, we need to lex and parse expressions. Lexing is straightforward, variables are single letters, we allow either \ or λ for lambda; it seems that we get the UTF-8 bytes for λ one at a time, so that’s just about our only multi character token, apart from primed identifiers (since we use primes to avoid variable capture in substitutions, we want to be able to read them in as well). Lex input is just a list of characters from an exploded string.

datatype LexItem = LAM | BRA | KET | DOT | VAR of string;

fun lex [] t = rev t
  | lex (#" "::s) t = lex s t
  | lex (#"\n"::s) t = lex s t
  | lex (#"\t"::s) t = lex s t
  | lex (#"\\"::s) t = lex s (LAM::t)
  | lex (#"("::s) t = lex s (BRA::t)
  | lex (#")"::s) t = lex s (KET::t)
  | lex (#"."::s) t = lex s (DOT::t)
  | lex (#"\206" :: #"\187" ::s) t = lex s (LAM::t)
  | lex (c::s) t = lexvar s [c] t
and lexvar (#"'"::s) v t = lexvar s (#"'"::v) t
  | lexvar s v t = lex s (VAR (implode(rev v))::t);

Parsing is even more fun. This is a hand-built LR table-driven parser; table driven parsers are good for tricks like semi-intelligent error recovery or doing parse conflict resolution on the fly (useful eg. for languages with redefinable operation precedences like ML). We don’t do anything like that though, we don’t even explicitly detect errors, and instead rely on ML’s pattern matching – if the input is ungrammatical, we get an inexhaustive match error:

fun parse s = 
  let
    (* Items appearing on the parse stack *)
    datatype ParseItem = B | E of Exp | V of Variable;
    fun aux [E e] [] = e
      | aux (E e1::E e2::s) t = aux (E(App(e2,e1))::s) t
      | aux s (LAM::VAR c::DOT::t) = aux (V c::s) t
      | aux s (LAM::VAR c::VAR c'::t) = 
                            aux (V c::s) (LAM::VAR c'::t)
      | aux s (BRA::t) = aux (B::s) t
      | aux ((a as E _):: B :: s) (KET::t) = aux (a::s) t
      | aux s (VAR c::t) = aux(E(Var c)::s) t
      | aux (E e::V v::s) t = aux (E(Lambda(v,e))::s) t;
  in
    aux [] (lex (explode s) [])
  end

Well, that’s it for the moment. Next installment – evaluating expressions.


Templated bit twiddling

Sometimes it’s nice to combine C++ template metaprogramming with some bit twiddling, here’s a classic parallelized bit counting algorithm with all the magic numbers constructed as part of template instantiation:

#include <stdio.h>
#include <stdlib.h>

template <typename T, int k, T m>
struct A
{
  static T f(T n)
  {
    static const int k1 = k/2;
    n = A<T, k1, m^(m<<k1)>::f(n);
    return ((n>>k)&m) + (n&m);
  }
};

template <typename T, T m>
struct A<T, 0, m>
{
  static T f(T n) { return n; }
};

template<typename T>
static inline int bitcount (T n)
{
  static const int k = 4 * sizeof(n);
  return A<T, k, (T(1)<<k)-1>::f(n);
}

int main(int argc, char *argv[])
{
  unsigned long n = strtoul(argv[1], NULL, 10);
  printf("bitcount(%lu) = %d\n", n, bitcount(n));
}

We could extract the magic number construction out as a separate template, and there are some extra optimizations that this code doesn’t do, for example, the level 1 code can be simplified to:

i = i - ((i >> 1) & 0x55555555);

rather than what we get from the above:

i = ((i >> 1)&0x55555555) + (i&0x55555555);

Adding an appropriate partial template instantiation for A<T,1,m> is left as an exercise.

In fact, there are lots of shortcuts that can be made here, we aren’t really being competitive with Bit Twiddling Hacks:

unsigned int v; // count bits set in this (32-bit value)
unsigned int c; // store the total here
static const int S[] = {1, 2, 4, 8, 16}; // Magic Binary Numbers
static const int B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF};

c = v - ((v >> 1) & B[0]);
c = ((c >> S[1]) & B[1]) + (c & B[1]);
c = ((c >> S[2]) + c) & B[2];
c = ((c >> S[3]) + c) & B[3];
c = ((c >> S[4]) + c) & B[4];

which would need 3 template specializations and we are starting to get a bit complicated…

In the same style then, here’s a bit reverse function, with a separate magic number calculating template:

#include <stdio.h>
#include <stdlib.h>

template <typename T, int k>
struct Magic {
  static const T m = ~T(0)/(T(1)+(T(1)<<k));
};

template <typename T, int k>
struct RevAux {
  static inline T f(T n) {
    T n1 = RevAux<T,k/2>::f(n);
    return ((n1>>k) & Magic<T,k>::m) | ((n1 & Magic<T,k>::m)<<k);
  }
};

template <typename T>
struct RevAux<T,0> {
  static inline T f(T n) { return n; }
};

template <typename T>
T rev(T n) { return RevAux<T,4*sizeof(T)>::f(n); }

int main(int argc, char *argv[])
{
  unsigned long n = strtoul(argv[1],NULL,16);
  printf("%lx %lx\n", n, rev(n));
}

Now, how do we check that the template parameter T is unsigned (otherwise the right shifts are probably going to go wrong)…

A simple optimization is to replace the top level function with:

template <typename T>
static inline T rev(T n) { 
  static const int k = 4*sizeof(T);
  n = RevAux<T,k/2>::f(n); 
  return (n>>k)|(n<<k);
}

but GCC seems to have worked that out for itself (compiling gcc 4.4.3 , -O3 -S):

.globl _Z7reversej
        pushl   %ebp
        movl    %esp, %ebp
        movl    8(%ebp), %eax
        popl    %ebp
        movl    %eax, %edx
        andl    $1431655765, %edx
        shrl    %eax
        addl    %edx, %edx
        andl    $1431655765, %eax
        orl     %eax, %edx
        movl    %edx, %eax
        andl    $858993459, %eax
        shrl    $2, %edx
        andl    $858993459, %edx
        sall    $2, %eax
        orl     %edx, %eax
        movl    %eax, %edx
        andl    $252645135, %edx
        shrl    $4, %eax
        andl    $252645135, %eax
        sall    $4, %edx
        orl     %eax, %edx
        movl    %edx, %eax
        andl    $16711935, %eax
        shrl    $8, %edx
        sall    $8, %eax
        andl    $16711935, %edx
        orl     %edx, %eax
        rorl    $16, %eax
        ret

This sort of thing isn’t going to work very well if the compiler isn’t up to scratch, but GCC seems to have done it right here.

There are slightly faster ways to reverse bits using ternary swap (swap top and bottom thirds, recurse), but they need to be more ad hoc unless you have a ternary computer with word length a power of 3, so less amenable to this sort of generic treatment (or at least, it becomes a lot harder).


An Interesting Combinator

A fixpoint operator F is such that:

ie. F = λf.f(Ff)

ie. F is a fixpoint of λF.λf.f(Ff)

ie. fixpoints are fixpoints of M = λx.λy.y(xy)

Church’s Y operator is a fixpoint operator:

Y = λf.(λx.f(xx))(λx.f(xx))
[Yf = (λx.f(xx))(λx.f(xx)) [beta]
= f((λx.f(xx))(λx.f(xx))) [beta]
= f(Yf) [subst of equals]]

Let’s apply Y to M and call the result T:

T = YM = (λx.M(xx))(λx.M(xx))
= (λx.λy.y(xxy))(λx.λy.y(xxy)) [since λx.M(xx) = λx.λy.y(xxy)]

T is the Turing fixpoint combinator. Isn’t that strange? No doubt there is some deep reason behind this, but what it might be I have no idea. Perhaps it’s related to the fact that Yf needs substitution of equals to show equivalence with f(Yf), whereas T(f) directly reduces to f(Tf):

Tf = (λx.λy.y(xxy))Bf [def]
= f(BBf) [beta]
= f(Tf) [def]


A Familiar Series?


      0        1        2        3        4        5        6        7
      8        9       10       11       12       13       14       15
     16       18       20       22       24       26       28       30
     32       36       40       44       48       52       56       60
     64       72       80       88       96      104      112      120
    128      144      160      176      192      208      224      240
    256      288      320      352      384      416      448      480
    512      576      640      704      768      832      896      960
   1024     1152     1280     1408     1536     1664     1792     1920
   2048     2304     2560     2816     3072     3328     3584     3840
   4096     4608     5120     5632     6144     6656     7168     7680
   8192     9216    10240    11264    12288    13312    14336    15360
  16384    18432    20480    22528    24576    26624    28672    30720
  32768    36864    40960    45056    49152    53248    57344    61440
  65536    73728    81920    90112    98304   106496   114688   122880
 131072   147456   163840   180224   196608   212992   229376   245760
 262144   294912   327680   360448   393216   425984   458752   491520
 524288   589824   655360   720896   786432   851968   917504   983040
1048576  1179648  1310720  1441792  1572864  1703936  1835008  1966080
2097152  2359296  2621440  2883584  3145728  3407872  3670016  3932160
4194304  4718592  5242880  5767168  6291456  6815744  7340032  7864320

In fact, they are floating point numbers, or rather, integers with the same distribution as floating point numbers, and just need some appropriate scaling, for example by dividing by 8388608, to give a nice set of numbers in the interval [0,1).

Notice that for all but the first row, every entry in a row has the same number of digits in its binary representation – they are normalized, with the first row corresponding to the denormalized numbers of IEEE-754. Without the denormalized numbers, there would be a great gap around zero.

Also, the numbers in each row are the same distance apart, with the gap at row n+1 being twice the gap at row n. Again, the first row is the exception, the gap here is the same as the second row – so the first 16 numbers form a uniformly spaced sequence from 0 – there isn’t anything very peculiar about the denormalized numbers, they just represent a continuation of the first row of normalized numbers to fill the gap down to zero.

We can see how a scaled comparison of floats might work too – within each row, two elements are close if they are within n places of each other, or equivalently, if they are within some constant multiple of the row gap. For elements in different rows, we can either just carry on counting the number of intervening numbers, or continue using the row gap to define a neighbourhood of each number. For example, if “close” means “twice the row gap”, then 22 is close to 18, 20, 24 and 26; 16 is close to 12, 13, 14. 15, 18 and 20; and 15 is close to just 13, 14 and 16. This notion of closeness is discussed by Knuth in TAOCP.

We don’t have to insist on base 2 of course, here’s a similar sequence based on powers of 3, with 10 elements in each segment. This gives us 5 denormalized values:


     0       1       2       3       4
     5       6       7       8       9      10      11      12      13      14
    15      18      21      24      27      30      33      36      39      42
    45      54      63      72      81      90      99     108     117     126
   135     162     189     216     243     270     297     324     351     378
   405     486     567     648     729     810     891     972    1053    1134
  1215    1458    1701    1944    2187    2430    2673    2916    3159    3402
  3645    4374    5103    5832    6561    7290    8019    8748    9477   10206
 10935   13122   15309   17496   19683   21870   24057   26244   28431   30618
 32805   39366   45927   52488   59049   65610   72171   78732   85293   91854
 98415  118098  137781  157464  177147  196830  216513  236196  255879  275562
295245  354294  413343  472392  531441  590490  649539  708588  767637  826686
885735 1062882 1240029 1417176 1594323 1771470 1948617 2125764 2302911 2480058

Once again, each row, except the first, every number has the same number of digits in its base 3 representation.